Counting Singular Matrices with Primitive Row Vectors

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurately Counting Singular Values of Bidiagonal Matrices

We have developed algorithms to count singular values of a bidiagonalmatrix which are greater than a speci ed value This requires the transformation of the singular value problem to an equivalent symmetric eigenvalue problem The counting of sin gular values is paramount in the design of bisection and multisection type algorithms for computing singular values on serial and parallel machines The ...

متن کامل

Counting tableaux with row and column bounds

It is well-known that the generating function for tableaux of a given skew shape with r rows where the parts in the i'th row are bounded by some nondecreasing upper and lower bounds which depend on i can be written in form of a determinant of size r. We show that the generating function for tableaux of a given skew shape with r rows and c columns where the parts in the i'th row are bounded by n...

متن کامل

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Primitive Sets with Large Counting Functions

A set of positive integers is said to be primitive if no element of the set is a multiple of another. If S is a primitive set and S(x) is the number of elements of S not exceeding x, then a result of Erdős implies that ∫∞ 2 (S(t)/t log t) dt converges. We establish an approximate converse to this theorem, showing that if F satisfies some mild conditions and ∫∞ 2 (F (t)/t log t) dt converges, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte f�r Mathematik

سال: 2004

ISSN: 0026-9255,1436-5081

DOI: 10.1007/s00605-004-0250-7